Quiz 4
\#1 㫙 should be perpendicular to level sets, eliminating first two answer choices.
$|\nabla f|$ is the rate of increase (in the direction of steepest increase) and so the third answer choice is a lot more reasonable than the fur th.
\#2 Told that $f_{x}(\pi / 2,0)=0$

$$
f_{y}(\pi / 2,0)=0 .
$$

$$
\begin{aligned}
& g(x, y)=\sin (f(x, y)) \\
& g_{x}(x, y)=\cos (f(x, y)) f_{x}(x, y) \\
& g_{y}(x, y)=\cos (f(x, y)) f_{y}(x, y)-
\end{aligned}
$$

What can I plug in for x and y to mate these zero?
A: Just use $(\pi / 2,0)$. be a critical point of $g(u, v)=\sin (f(u+v, u-v))$?

$$
(6,-2) \quad \text { A }
$$

$$
(3,-1)
$$

None of the above

Were told:

$$
f_{x}(2,4)=0 \quad f_{y}(2,4)=0 .
$$

$$
\begin{aligned}
g_{u}(u, v) & =\cos (f(u+v, u-v)) f_{x}(u+v, u-v) \cdot(1) \\
+ & \cos (f(u+v, u-v)) f_{y}(u+v, u-v) \cdot(1) \\
g_{v}(u, v) & =\cos (f(u+v, u-v)) f_{x}(u+v, u-v) \cdot(1) \\
& +\cos (f(u+v, u-v)) f_{y}(u+v, u-v) \cdot(-1)
\end{aligned}
$$

What can we plug in for u and v to make these zero?

Want to make $u+v=2$

$$
u-v=4
$$

$$
\leadsto u=3 \quad v=-1 .
$$

$$
\frac{x-7}{3}=y-2=\frac{z+1}{9}
$$

If L and H ave parallel, then distance between then is the distance between P and H, where P is any pto on L.

For distance from P to H, can use formula, or
pick some point Q on H es. . $(0,0,0)$ in this example, then compute

$$
\left|\operatorname{comp}_{\vec{n}} \overrightarrow{P Q}\right|
$$

If L_{1}, L_{2} are parallel lines, to find distance. pick a point P on L. Then it's jut the distance from P to L_{2}.

$$
Q \text { is any plo on } L_{2} \text {. } \vec{v} \text { is a }
$$

direction vector for L_{2}.

$$
\text { Distavie: }=\frac{|\vec{V} \times \overrightarrow{P Q}|}{|\vec{v}|} \leftarrow \underset{\substack{\text { Area fled } \\ \text { shard } \\ \text { pardelogizm }}}{ }
$$

1. If dealing with skew lines, refer to tart example in \$/2.4

Consider the polar curve $r=\sin (3 \theta)$. Starting from $\theta=0$, when does this polar curve begin to retrace itself?

$$
\begin{gathered}
\operatorname{At} \theta=\pi / 3 \\
\operatorname{At} \theta=2 \pi / 3 \\
\operatorname{At} \theta=\pi \\
\operatorname{At} \theta=2 \pi
\end{gathered}
$$

This curve does not retrace itself.

Consider the polar curve $r=\sin (4 \theta)$. Starting from $\theta=0$, when does this polar curve begin to retrace itself?

$$
\begin{gathered}
\text { At } \theta=\pi / 4 \\
\text { At } \theta=\pi / 2 \\
\text { At } \theta=\pi \\
\text { At } \theta=2 \pi
\end{gathered}
$$

This curve does not retrace itself.

same point in the xy-plane!!!
example: $\begin{aligned} & \theta=\frac{\pi}{9} \\ & r=\frac{\sqrt{3}}{2}\end{aligned} \quad \begin{aligned} & \theta=\frac{\pi}{9}+\pi \\ & r=-\frac{\sqrt{3}}{2}\end{aligned}$

For $\sin (4 \theta)$, turns out ash need 2π rather than π.

