Quized
#1 If should be perpendicular to level
sets, eliminating first two answer
choices.

$$|\nabla f|$$
 is the rate of increase (in the
direction of steepest increase) and
so the third answer choice is a lot
more reasonable than the fourth.
#2 Told that $f_{x}(\pi/2, 0) = 0$
 $f_{y}(\pi/2, 0) = 0$.

Respond at PollEv.com/xianglongni346 Text XIANGLONGNI346 to 37607 once to join, then A, B, C, D, or E

Suppose (2,4) is a critical point of f(x,y). Which of the following must be a critical point of g(u, v) = sin(f(u + v, u - v))?

$$(6, -2)$$

 $(3, -1)$
 $(\sin(2), \sin(4))$
 $(\sin(6), \sin(-2))$
None of the above

Α
В
С
D
E

Total Results: 11

$$We're + old: f_{x}(2,4) = 0 \qquad f_{y}(2,4) = 0.$$

$$g(u,v) = cos(f(u+v,u-v))f_{x}(u+v,u-v) \cdot (1)$$

$$+ cos(f(u+v,u-v))f_{y}(u+v,u-v) \cdot (1)$$

$$g_{v}(u,v) = cos(f(u+v,u-v))f_{x}(u+v,u-v) \cdot (1)$$

$$f_{v}(u+v,u-v) + (1)$$

$$f_{v}(u+v,u-v) + (1)$$

What can we plug in for u and v to make
these zero?
Want to make
$$u + v = 2$$

 $u - v = 4$

h

2

For distance from
$$P$$
-to H , can use
formula, or
pick some point Q on H e.g.
 $(0,0,0)$ in this example, then compute
 $\left| comp \frac{PQ}{p} \right|$.

Distance - $\frac{\left|\vec{v} \times \vec{Pa}\right|}{\left|\vec{v}\right|} \leftarrow Area of shaded$ fill parallelparallelegrom I IF idealing with skew lines, refer to fast example in \$12.4

Consider the polar curve $r=\sin(3 heta)$. Starting from heta=0, when does this polar curve begin to retrace itself?

This curve does not retrace itself.

Consider the polar curve $r = \sin(4\theta)$. Starting from $\theta = 0$, when does this polar curve begin to retrace itself?

This curve does not retrace itself.

